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A method to discretize non-planar fractures for 3D subsurface flow
and transport simulations
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SUMMARY

A method is presented to discretize inclined non-planar 2D fractures within a 3D finite element grid
for subsurface flow and transport simulations. Each 2D fracture is represented as a triangulated surface.
Each triangle is then discretized by 2D fracture elements that can be horizontal, vertical or inclined
and that can be triangular or rectangular. The 3D grid representing a porous rock formation consists of
hexahedra and can be irregular to allow grid refinement. An inclined fracture was discretized by (a) inclined
triangles and (b) orthogonal rectangles and flow/transport simulations were run to compare the results.
The comparison showed that (i) inclined fracture elements must be used to simulate 2D transient flow,
(ii) results of 2D/3D steady-state and 3D transient flow simulations are identical for both discretization
methods, (iii) inclined fracture elements must be used to simulate 2D/3D transport because orthogonal
fracture elements significantly underestimate concentrations, and (iv) orthogonal elements can be used
to simulate 2D/3D transport if fracture permeability is corrected and multiplied by the ratio of fracture
surface areas (orthogonal to inclined). Groundwater flow at a potential site for long-term disposal of spent
nuclear fuel was simulated where a complex 3D fracture network was discretized with this technique. The
large-scale simulation demonstrates that the proposed discretization procedure offers new possibilities to
simulate flow and transport in complex 3D fracture networks. The new procedure has the further advantage
that the same grid can be used for different realizations of a fracture network model with no need to
regenerate the grid. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fractures in rock formations have a significant impact on groundwater flow and solute transport.
For example, fractures represent preferential pathways where solutes migrate at velocities that are
several orders of magnitude larger than within the rock matrix itself. Discrete fracture models
have been used for theoretical and practical studies of fluid flow and solute transport [1–21].
Discrete fracture models are attractive because fracture network characteristics (e.g. fracture size,
orientation and aperture) reflect the physical properties of the rock, hence making it possible to
investigate different network parameters and to quantify stochastic uncertainty associated with frac-
ture networks [7]. There are, however, some limitations to the practical application of the discrete
fracture approach. For example, the geometry of complex fracture networks within a permeable
matrix is difficult to represent in a numerical grid. Although natural fracture surfaces probably
resemble non-planar polygons, the geometry of these surfaces is often simplified and represented
by one-dimensional segments [2, 12, 16, 18], planar discs [1, 3, 7], planar rectangles [9, 14, 19–21]
or planar polygons [11, 18]. While these simplifications can be adequate for conceptual studies,
investigating a real system requires that the fracture network be represented in the grid in its full
complexity.

Because the exact location and geometry of real fractures are difficult to determine, frac-
ture network characteristics such as fracture shape, orientation, and connectedness are often
assumed to obey geostatistical distributions [22–26]. Therefore, stochastic approaches are very
common to generate fracture networks and to capture uncertainty in the knowledge of frac-
tures [2, 3, 7, 12, 27–29]. For example, in a stochastic Monte-Carlo approach, numerous real-
izations of fracture networks are generated and the result of flow and transport simulations
from all networks are averaged. The number of networks generated is considered sufficient
when the averaged result remains unchanged if additional realizations are produced. Because
the number of realizations required is usually high (>100), the geometry of each fracture net-
work should be efficiently imported into the grid to keep simulation times within reasonable
limits.

Uncertainty associated with fracture networks has previously been addressed by converting dis-
cretely fractured rock to a continuum medium. In that case, individual fractures are not explicitly
represented and porous matrix elements have the equivalent permeability of the fractured rock
[27, 28]. However, a limitation of this approach is the weak coupling between real fracture geom-
etry and hydraulic properties of the model. When hydraulic properties of the fractured rock are
converted to a continuum medium, the detailed structure of the fractured rock is not accounted for
and properties of the hydraulically equivalent system may be very different from fractured rock
properties [7]. This difference is greater when fracture density in the rock is small and when few
large fractures dominate groundwater flow. In addition, not all fracture data are needed when using
the equivalent porous medium approach and important information may potentially be missing in
the model.

Prior groundwater flow studies in discretely fractured media have used different approaches to
represent the complex geometry of fractured rock. Some studies have assumed an impermeable
matrix where flow takes place only within the fracture planes [3–5, 8, 13, 30–36]. Bruines [37]
has made the further assumption that flow only takes place along the 1D intersections of 2D
fracture planes. Assuming that an impermeable matrix simplifies fracture discretization because
the matrix does not need to be discretized and 2D fractures represent the only model domain
requiring discretization. However, while the low-permeability porous matrix can be neglected for
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groundwater flow studies, it cannot always be neglected for solute transport studies because of
potentially high diffusive fluxes within the rock matrix.

Moenickes et al. [38] have proposed a ‘2.75D’ mesh generation of discretely fractured media.
Their method discretizes fractures by 2D elements and subdivides the low-permeability porous
matrix into two regions: (i) a region far from fractures and (ii) a region near fractures. Steady-
state conditions are assumed in the first region, making its representation in the grid unnecessary.
Transient conditions are assumed in the second region and the porous matrix near the fractures
is discretized either by 3D prisms or 3D hexahedra. The ‘2.75D’ mesh proposed by Moenickes
et al. [38] is, therefore, a skeleton of 3D matrix elements covering 2D fracture planes. On the
one hand, the method proposed by Moenickes et al. [38] is very useful to simulate flow and
transport in fractures and parts of the matrix. On the other hand, simulations of different stochastic
realizations of a fracture network, for example using a Monte-Carlo approach, cannot be done
within a reasonable time frame because each simulation requires time-consuming re-meshing of
the ‘2.75D’ domain.

Representing the rock matrix in 3D and discrete fractures in 2D complicates the realistic rep-
resentation of 2D fractures in 3D finite element grids. When orthogonal grids are used, discrete
fractures are usually aligned on grid faces, allowing only for representation of orthogonal frac-
tures [14, 16, 39]. Watanabe and Takahashi [12] have previously discretized inclined fractures on
orthogonal grids, for a vertical 2D slice, by combining horizontal and vertical 1D fracture ele-
ments (pipes) that connect element-centered nodes of adjoining 2D porous matrix elements. This
approach has been extended to 3D by Graf and Therrien [19–21], who have included inclined
2D fracture elements (in addition to horizontal and vertical ones) in the discretization of inclined
fractures in a 3D porous medium. However, the approach of Graf and Therrien is restricted to the
discretization of inclined fractures that are (i) rectangular, (ii) planar and (iii) parallel to at least
one coordinate axis. Normani et al. [40] have recently developed a technique to discretize 3D arbi-
trarily inclined non-planar triangulated fractures in orthogonal grids by combining horizontal and
vertical rectangular fracture elements. Their method, however, increases the actual fracture surface
area and can influence simulation results, for example by underestimating solute concentrations
because flow paths are lengthened.

Non-orthogonal irregular grids containing prisms, tetrahedra or distorted hexahedra can also
be used to discretize fractures in 3D. In that case, the grid geometry must be chosen such that
face locations of 3D porous matrix elements coincide with locations of 2D fractures [18, 41, 42].
That method has the disadvantage that discretizing fracture networks of high complexity is very
challenging, time consuming and sometimes impossible. Describing discrete fractures within an
irregular 3D grid is further complicated when fractures are non-planar.

The objective of this study is to develop a flexible method to discretize 2D fractures within
a 3D porous matrix to address statistical uncertainty associated with fluid flow and solute trans-
port in fractured rock. We introduce a new technique to discretize non-planar inclined discrete
fractures, developed with the FRAC3DVS model, which solves 3D flow and solute transport
in discretely fractured porous media [14]. The enhanced model triangulates non-planar inclined
fractures and represents each triangle by a series of rectangular and triangular fracture elements,
which can be horizontal, vertical or inclined. With the improved model, we discretize a single
inclined fracture and conduct flow/transport simulations in 2D and 3D. The results are compared
with simulations where the inclined fracture is represented by orthogonal elements. Finally, we
present an application of the model to simulate field-scale fluid flow in a fractured granitic rock
formation.
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2. NUMERICAL MODEL

FRAC3DVS is a 3D variable-density saturated–unsaturated numerical groundwater flow and multi-
component solute transport model, which represents fractures using either the discrete fracture
approach or an equivalent porous medium approach. The governing equations for flow and solute
transport are identical to those used by Graf and Therrien [19]. A detailed description of the model
can be found elsewhere [14, 19–21, 43] and is not repeated here. The following section focuses on
the modification of the FRAC3DVS model to discretize inclined non-planar discrete 2D fractures
within a 3D orthogonal finite element grid.

2.1. Model development

Discretizing non-planar 2D fractures in a 3D orthogonal grid comprises the following steps, which
will be discussed in further detail below:

(1) Triangulate a non-planar natural fracture by a series of planar triangles.
(2) Generate a 3D finite element grid using hexahedral elements.
(3) Find intersections of all triangles with the element edges.
(4) Move the element edge intersections to closest nodes. These nodes will ultimately become

fracture nodes.
(5) Choose the 2D fracture elements (triangles and rectangles) that connect the fracture nodes

for each 3D matrix element.
(6) Formulate derivatives of approximation functions of triangular fracture elements to solve

for fluid flow and solute transport.

2.1.1. Step 1: Triangulate non-planar natural fractures. Triangulation is probably the most com-
mon approach to represent natural fractures in 3D because the fracture surfaces can be triangular,
rectangular, disc-like, polygonal, planar or non-planar. A triangulated fracture surface consists of
planar triangles as shown in Figure 1. Intersections of fractures with individual boreholes can be
triangle apexes when triangulating natural fractures. The associated triangles are linear interpolation
surfaces between borehole intersections with fractures. Geostatistical software such as FXSIM3D
generates stochastic networks of triangulated fracture surfaces [44]. The number of triangles used
to represent a real fracture depends on the modeler’s judgement. Too few triangles represent a real
fracture too roughly but too many triangles may complicate fracture discretization.

2.1.2. Step 2: Generate 3D finite element grid. A 3D grid with hexahedral elements is generated.
Grid spacing need not be uniform and grid line density may be larger near a pumping well. The grid
lateral boundaries need not be rectangular, for example to represent irregular horizontal boundaries,
and the grid may contain distorted hexahedral elements to represent inclined geological strata or
irregular domain topography. Figure 2 shows a distorted hexahedral element, where 4-node element
faces on the domain top or bottom may be inclined. The figure also shows the 12 element edges
of a hexahedral element. Note that the element edges need not be horizontal or vertical.

2.1.3. Step 3: Find element edge intersections. Element edge intersections are defined here as the
points where an element edge intersects a fracture triangle. Intersections with all element edges are
found with the equation of a planar fracture triangle, ax + by + cz + d = 0, and with the equation

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2069–2090
DOI: 10.1002/fld



METHOD TO DISCRETIZE NON-PLANAR FRACTURES 2073

Figure 1. Representation of a non-planar fracture by a set of planar triangles. The intersection of
the fracture with investigation boreholes is represented by hollow dots.
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Figure 2. Element edges and local node numbering of a distorted 3D hexahedral porous matrix element.

of a straight element edge, x=OS1 + � · S1S2, where x represents the element edge in vectorial
form, O is the origin, S1 and S2 are start and end points of a segment and � is a real number.
Finally, a series of intersections with element edges is obtained. Figure 3(a) shows element edge
intersections with a single triangle. Note that, for clarity, the figure only shows the intersections
on the left front boundary of the cubic model domain.

2.1.4. Step 4: Move intersections to closest nodes. Step 4 identifies nodes that can become fracture
nodes and also generates a list of possible fracture nodes for each 3D finite element. The element
edge intersections found in the previous step do not necessarily correspond to a node of the finite
element grid. Because the objective is to represent complex fracture networks on easily generated
grids, the element edge intersections are moved to the closest grid nodes, such that the original
finite element grid geometry is retained (Figure 3(b)). For each 3D porous matrix element, the
distances from local nodes 1–8 (Figure 2) to the intersection are compared and the intersection is
moved to the closest node.
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Figure 3. Discretization of a planar fracture triangle: (a) find intersections of the triangle with element
edges, shown by grey dots; (b) move element edge intersections to closest nodes, shown by black dots;

and (c) select 2D fracture elements from selected nodes.

When an intersection is located at the same distance to two nodes, node numbering of the
finite element grid will control the node to which the intersection is moved. The intersection will
always be moved to the node with the lower number. For example, if an intersection is located
exactly between local nodes 2 and 6 (Figure 2), the intersection will be moved to node 2 because
node 6 is not closer to the intersection. However, if an intersection is exactly between nodes 1
and 2, it is moved to node 1. It should be noted that some intersections may be moved to the
same node.

2.1.5. Step 5: Choose triangular and rectangular fracture elements. Between 0 and 7 fracture
nodes are assigned to each 3D hexahedral element in step 4. Step 5 finds the 2D fracture element(s)
(triangles and/or rectangles) that connect the assigned fracture nodes in each 3D matrix element.
Choosing fracture elements from assigned fracture nodes is governed by the rules shown in Table I
where local node numbers are used (Figure 2). These rules have been defined (i) to ensure that the
orientation of the chosen fracture elements reflects the natural fracture orientation, (ii) to minimize
the surface of the discretized fracture with respect to the surface of original triangulated fracture
plane and (iii) to guarantee that most segments forming the edges of the 2D fracture elements are
located on an outer surface of 3D matrix elements. The rules imply that not all potential fracture
nodes may be included in one of the chosen fracture elements. For example, in case 7 (Table I), the
global fracture orientation is probably best represented by choosing triangle 1–3–6 as a fracture
element. In that case, node 2 is dropped because choosing triangles 1–2–3, 1–2–6 and 2–3–6
increases the fracture surface area with respect to the natural fracture and it does not maintain the
natural fracture orientation. Rule (iii) guarantees continuity of fracture surface and avoids creation
of artificial holes in the discretized fracture. For example, in case 6, choosing triangles 1–2–5
and 2–3–5 represents the natural fracture orientation equally well as choosing 1–2–3 and 1–2–5
but, in the former case, the outer segment 1–3 is inexistent. Furthermore, a third fracture element
which would be located in the matrix element underneath and which would contain segment 5–7
would not connect to either 1–2–5 or 2–3–5, hence creating an artificial hole in the fracture surface
between nodes 1–2–3.

The result of step 5 is a fully connected fracture that is discretized by 2D horizontal/vertical/
inclined triangular/rectangular fracture elements. Figure 3(c) shows the discretized continuous
fracture of Figure 3(a).
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Table I. Rules to choose fracture elements (triangles � and/or rectangles �) from selected fracture nodes.

Case Number of fracture nodes Fracture nodes selected Fracture element(s) chosen

1 0 None None
2 1 Any node None
3 2 Any 2 nodes None
4 3 Any 3 nodes � Through the 3 nodes
5 4 Any 4 nodes on a plane � Through the 4 nodes
6 4 1–2–3–5 �1–2–3 and �1–2–5
7 4 1–2–3–6 �1–3–6
8 4 1–2–3–8 �1–2–3 and �1–3–8
9 5 1–2–3–4–5 �1–2–3–4

10 5 1–2–3–5–7 �1–2–5 and �2–3–7 and �2–5–7
11 5 1–2–3–5–8 �1–2–3 and �1–3–8 and �1–5–8
12 6 1–2–3–4–5–6 �1–2–3–4 and �1–2–5–6
13 7 1–2–3–4–5–6–7 �1–2–3–4 and �1–2–5–6 and �2–3–6–7

The method can be used to discretize fractures obtained from different realizations with the same
grid as shown in Figure 4 where two simple irregular fractures are discretized. The fracture in each
realization is triangulated by the eight planar triangles shown on the left in Figure 4, and the two
examples could be regarded as two stochastic realizations of the same fracture. The orthogonal grid
(not shown) is refined near a vertical borehole, located in the domain center. Clearly, the same grid
is used for the two realizations and it does not have to be adapted and rebuilt for each realization.
This is a great advantage of the method presented here. Thus, the proposed discretization method
is a time saving and flexible way to represent multiple realizations of a fracture network model
for irregular grids. Therefore, performing a large number of numerical simulations using different
stochastic fracture network realization is not limited by the time required to construct complex
grids for each realization. Figure 4 also shows that the proposed discretization method works well
for a grid with non-uniform grid line spacing.

2.1.6. Step 6: Formulate derivatives of approximation functions. Derivatives of approximation
functions need to be formulated for the inclined triangular fracture elements. The derivatives account
for any shape and orientation of triangular elements. Approximation functions are formulated within
a Cartesian coordinate system using the local coordinates x and y. If the local coordinates of node i
are (xi , yi ) and if node 1 is at the origin of the local coordinate system, derivatives of approximation
functions (Ni ) can be written as [45]
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Figure 4. Discretization of two realizations of a non-planar fracture in an irregular finite
element grid containing a vertical borehole. Two perspectives of the triangulated fracture

(left) and its discretized form (right) are shown.
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Figure 5. Model design for test case 1 and for further 3D simulations. The inclined fracture has been
discretized by inclined triangles (method A; this study) and orthogonal rectangles (method B, [40]).

where A(L2) is the surface area of the triangular element. The model applies the control volume
finite element method to the flow equation [14] and the Galerkin finite element method to the
transport equation [19], with the derivatives of approximation functions as given by Equation (1).

2.2. Alternate discretization method of inclined fractures in 3D

Figure 5 shows an inclined fracture that was discretized with (i) inclined triangular elements using
the method described in the previous section (referred to as method A) and (ii) and by selecting
a series of horizontal and vertical rectangular 2D elements as developed by Normani et al. [40]
(method B). Method B is computationally faster than method A, but it has the disadvantage that
flow and transport paths can be significantly longer for the discretized fractures compared with
the natural fracture.

2.3. Model verification

Two test cases to verify solute transport in fractured rock are presented. Case 1 verifies the
new approximation functions for irregular triangular elements presented in Section 2.1.6 and
Equation (1). While case 1 focuses on flow and transport only in a fracture and neglects the
presence of the rock matrix, test case 2 verifies flow and transport in a fracture embedded in a
low-permeability porous matrix.

2.3.1. Case 1: solute transport in an inclined fracture embedded in an impermeable matrix.
The model domain for the first test case is a cube with a side length of 10m and consists of
216 000 hexahedral elements of side length 0.1667m (Figure 5). The cubic domain is considered
impermeable, except for a single fracture that is discretized with 3540 equilateral triangles (method
A) of side length 0.2357m. Fluid flow and solute transport parameters are identical to those used by
Shikaze et al. [16] and are listed in Table II. The lateral boundaries of the fracture are impermeable
and the top and bottom boundaries of the fracture are assigned constant hydraulic heads to create
a uniform flow field with velocity v = 1.484× 10−3 m s−1. The top boundary of the fracture is

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2069–2090
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Table II. Model parameters used for the analysis of flow and solute transport in 2D and 3D.

Parameter Value

Free-solution diffusion coefficient (Dd) 5 × 10−9 m2 s−1

Water density (�0) 1000 kgm−3

Water viscosity (�) 1.1 × 10−3 kgm−1 s−1

Specific storage of matrix (SS) 9.96 × 10−5 m−1

Matrix permeability (�i j ) 10−15 m2

Matrix longitudinal dispersivity (�l) 0.1m
Matrix transverse dispersivity (�t) 0.005m
Matrix porosity (�) 0.35
Tortuosity (�) 0.1
Specific storage of fracture (SfrS ) 4.32 × 10−6 m−1

Fracture dispersivity (�fr) 0.1m
Fracture aperture (2b) 50�m

All parameter values are identical to those used by Shikaze et al. [16]. The mathematical symbols correspond
to those used by Graf and Therrien [19].
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Figure 6. Concentration breakthrough curve of solute transport in an inclined fracture within an imper-
meable matrix. The analytical [46] and two numerical (FRAC3DVS) solutions using inclined (method A)

and orthogonal (method B) fracture elements are shown.

assigned a constant solute source of relative concentration c= 1. The described fracture boundary
conditions are chosen to force 1D advective–dispersive–diffusive solute transport in the fracture,
allowing comparison with the Ogata–Banks [46] analytical solution. Figure 6 shows that there is
very good agreement between the analytical and numerical solutions using method A.

Figure 6 also shows the simulated concentration breakthrough curve for the inclined fracture
discretized with orthogonal elements (method B). Concentrations are underestimated when using
orthogonal elements. This discrepancy can be attributed to the longer transport path for method B
compared with method A, which delays the arrival of the solute.

2.3.2. Case 2: solute transport in a fracture embedded in a porous matrix. In case 2, we used the
analytical solution of solute transport for a single fracture in a porous matrix presented by Tang
et al. [47]. Case 2 simulates advection in the single fracture, molecular diffusion and radioactive
decay in both fracture and matrix and fracture–matrix diffusion in a transient regime. The model
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Figure 7. Concentration profiles of solute transport in a fracture within a low-permeability porous matrix.
The figure shows concentrations at (a) 1000 days and (b) 10 000 days obtained from the analytical solution

[47] and the numerical FRAC3DVS model.

Table III. Model parameters used to verify solute transport in
a fracture embedded in a porous low-permeability matrix.

Parameter Value

Matrix porosity (�) 0.01
Matrix tortuosity (�) 0.1
Free-solution diffusion coefficient (Dd) 5.04576 × 10−2 m2 yr−1

Half-life of solute (Tritium) (T1/2) 12.35 yr
Fracture dispersivity (�fr) 0.0m
Fracture groundwater velocity (vfr) 3.65myr−1

Fracture aperture (2b) 100�m

All parameters are identical to those used by Tang et al. [47].

domain is a vertical slice of unit thickness with dimensions �x = 6m and �z = 2m (Figure 7).
The finite element grid consists of 4312 hexahedral elements of unit thickness. The element sizes
vary from �x = 0.01m (near the left boundary) to �x = 0.5m (near the right boundary) and
from �z = 0.001m (near the fracture) to �z = 0.1m (near the top and bottom boundaries). The
slice contains a horizontal planar 2D fracture located at z = 0. The fracture was discretized using
triangular 2D elements. No flow (or solute flux) boundary conditions are imposed on all boundaries
except the left and right boundaries where specified heads are applied such that the groundwater
flow velocity in the fracture is 3.65myr−1 ( = 0.01mday−1). A specified concentration of 1.0 is
imposed at x, z = 0, 0. Flow and transport parameters are identical to those used by Tang et al.
[47] and are summarized in Table III. Figure 7 shows two concentration profiles along the fracture
at different times. The figure demonstrates very good agreement between the analytical [47] and
numerical (this model) solutions proving that the numerical model correctly simulates flow and
transport in fractured porous media.
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3. SIMULATION OF FLOW AND SOLUTE TRANSPORT IN 2D AND 3D

This section compares results when an inclined fracture is discretized with inclined triangles
(method A) and when it is discretized with orthogonal rectangles (method B). The goal of this
comparison is to determine how an inclined fracture is best represented, with method A or B, for
a specific simulation context (for example steady-state or transient conditions, flow or transport).
Simulation parameters for the 2D and 3D simulations are shown in Table II and are held constant
unless otherwise stated.

For the 2D simulations, the model domain is a vertical slice of unit thickness with dimensions
�x = 10m and �z = 10m (Figure 8). The finite element grid consists of 2500 hexahedral elements
of size �x =�z = 0.2m and of unit thickness. The vertical slice contains an inclined planar
2D fracture whose location is shown in Figure 8. For the numerical simulations, the inclined
fracture was discretized using (a) inclined rectangles (method A) and (b) orthogonal (horizontal
and vertical) rectangles (method B). Simulated hydraulic heads and concentrations are reported
for an observation node located at x = 5m, z = 5m, which corresponds to a fracture node for both
methods.

For the 3D model, the domain is identical to that used for the verification simulation (Figure 5)
with the exception that the porous matrix is permeable. The boundary conditions along the fracture
edges are identical to those used for the verification simulation. The boundaries of the cube are zero-
dispersive flux for transport and impermeable to groundwater flow. For the numerical simulations,
the inclined fracture shown in Figure 5 was discretized using (a) inclined triangles (method A) and
(b) orthogonal rectangles (method B). The node at x = 5m, y = 5m, z = 5m is a fracture node for
both methods and it was used to obtain and compare simulation results.

3.1. Flow simulations

Steady-state and transient flow simulations were conducted in 2D and 3D. Steady-state flow
simulations show that the hydraulic head distribution for both discretization methods (A and B) is
identical in 2D and 3D (results not shown). The initial condition for the transient simulations in
2D and 3D is h0(t = 0)= 0.0m.
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h0(x,z,t = 0) = 0.0
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Figure 8. Simulation geometry, boundary and initial conditions for 2D simulations.
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Figure 9. Transient hydraulic heads from (a) 2D and (b) 3D simulations using
the initial condition h0(t = 0)= 0.0m.

Simulated hydraulic heads for 2D transient flow match very well for both discretization methods
(Figure 9(a)). However, Figure 9(a) suggests that method B slightly underestimates hydraulic heads.
Underestimating hydraulic heads using method B is attributed to the longer flow path in the fracture,
which delays the time to reach steady-state flow conditions.

For the 3D transient flow simulations, the simulated hydraulic heads are almost identical for
both methods A and B (Figure 9(b)). However, method B slightly overestimates hydraulic heads.
Note that method B underestimates hydraulic heads in 2D but slightly overestimates hydraulic
heads in 3D. This result is intriguing and may be attributed to computer round-off errors. Further
simulations (results not shown) have indicated that the difference is not due to flow boundary
conditions, which are applied differently for the 2D and 3D simulations.

3.2. Solute transport simulations

All transport simulations presented below have been conducted using implicit transport time
weighting and a steady flow field. The initial condition in 2D and 3D is c(t = 0) = 0.0.

Transport simulations for the 2D domain shown in Figure 8 indicate that concentrations obtained
with method B do not match those from method A (Figure 10(a)). Method B systematically
underestimates concentrations because the transport path in a fracture represented by orthogonal
elements is lengthened. For orthogonal elements (method B), both transport path and fracture
surface are greater by a factor equal to

√
2 compared with inclined triangulated elements (method

A). The fracture permeability used for method B must be increased by a factor
√
2 to increase

flow velocities and correct for the increased travel distance, such that

�corrfr = �fr · √
2 (2)

Fracture permeability is given by �fr = (2b)2/12 [48], and a corrected fracture aperture using
orthogonal fracture elements is therefore

(2b)corr = (2b) ·
√√

2 (3)
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Figure 10. Concentrations from (a) 2D and (b) 3D simulations using the initial condition
c(t = 0)= 0.0. Fracture aperture for orthogonal elements (method B) was corrected to

match concentrations from method A.
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HELSINKI

Figure 11. Olkiluoto Island in the Baltic Sea in southern Finland. The black frame on the left map shows
the location of the repository for spent fuel.

The 2D transport simulation using orthogonal elements was repeated using a corrected fracture
aperture (2b)corr = 59.46 �m. Results shown in Figure 10(a) demonstrate that with the corrected
fracture aperture, method B matched results from method A.

The 3D transport simulations for the domain shown in Figure 5 also indicate that the longer
fracture length for method B underestimates flow velocities. As a result, method B underestimates
concentrations as shown in Figure 10(b). The 5669 orthogonal elements used for method B each
have an area of size 0.02778m2, while the 3540 triangular elements for method A each have an
area of size 0.02406m2. Therefore, in the 3D example, the fracture surface area for method B is
1.849 times greater than for method A. To adjust for the difference in fracture area, the corrected
fracture permeability for method B must therefore be 1.848 times greater than the permeability
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Table IV. Characteristics of all fracture zones used for the field-scale example.

Fracture zone

Fracture aperture Fracture transmissivity
ID Name (�m) (10−7 m2 s−1) Number of 2D elements

1 HZ001 25.9 0.13 928
2 HZ002 111.2 10.00 207
3 HZ003 95.4 6.31 140
4 HZ004 60.2 1.58 2820
5 HZ19A 129.7 15.85 6469
6 HZ008 239.6 100.00 2565
7 HZ19C 163.2 31.62 6894
8 HZ20A 221.9 79.43 7696
9 HZ20AE 111.2 10.00 331

10 HZ20B ALT 163.2 31.62 7783
11 HZ21 27.9 0.16 7860
12 HZ21B 103.0 7.94 6823
13 BFZ099 27.9 0.16 7575

for method A, such that

�corrfr = �fr · 1.848 (4)

Accordingly, the corrected fracture aperture is

(2b)corr = (2b) · √
1.848 (5)

The 3D transport simulation using orthogonal elements was repeated using the corrected fracture
aperture (2b)corr = 67.99 �m. Results shown in Figure 10(b) indicate very good agreement between
results for methods A and B when the aperture is corrected.

4. FIELD-SCALE EXAMPLE: OLKILUOTO ISLAND, FINLAND

To illustrate the method presented in this paper, we simulated steady-state groundwater flow in
crystalline rock at the Olkiluoto site, Finland, which is the proposed location for an underground
spent fuel repository [49]. Olkiluoto is an island in the Baltic Sea, separated from the mainland
by a narrow strait (Figure 11). Extensive site investigations have been carried out at Olkiluoto and
spent fuel from the Finnish nuclear power plants will be disposed of in a repository located in the
central part of the island (black frame on left map in Figure 11). The repository will be excavated
in crystalline bedrock at a depth of 400–700m below the level of the Baltic Sea.

A total of 31 deep open boreholes have been drilled at the site to monitor groundwater flow and
hydraulic heads. Drilling reports of the boreholes revealed that the crystalline bedrock is slightly
fractured, with an average fracture frequency of 1–3 fractures/m. Core sample studies revealed the
presence of 13 major fracture zones (Table IV) acting as major hydraulic zones [49]. The geometry
of each of these major zones is available as a series of triangular planes (as shown in Figure 1),
which have been constructed from the intersection of the zones with the boreholes at depth. The
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Figure 12. Locally refined irregular 3D grid with variable topography used for the field-scale example.

data used for the simulation presented here are obtained from the latest available hydrogeological
model for the site [50].

A 3D grid was built to simulate steady-state groundwater flow observed at Olkiluoto Island
(Figure 12). The grid consists of 198 792 3D hexahedral elements and 212 566 nodes. It has an
irregular horizontal footprint and the elevation of the top layer of nodes represents either the
island topography or sea level [49, 50]. Horizontal grid line spacing varies from 2m near the
boreholes to 100m at the domain boundaries. Vertical grid line spacing varies from 10m (domain
top) to 100m (domain bottom). Because fracture density is low, representing the fractures as
discrete continua is given preference. Accordingly, the newly developed discretization method
described here was used to represent the 13 undiscretized fracture zones (shown in Figure 13(a))
as discrete fractures in the grid. Figure 13(b) displays the discrete fractures and the total number
of 2D fracture elements is 58 091 (Table IV). Spatial dimensions in Figure 13(a) and (b) are
different because the undiscretized fracture zones (Figure 13(a)) extend outside the model area
shown in Figures 12 and 13(b). Figure 13(b) also shows the location of 25 deep boreholes
(KR01 . . .KR16, KR19, KR20, KR22 . . .KR28), which are represented as 1D line elements in
the model.

The 3D rock matrix is assumed to be isotropic with a hydraulic conductivity value equal to
10−7 m s−1 for z>−50m and 10−12 m s−1 for z<−50m. The aperture and transmissivity of the
2D hydraulic zones are variable and shown in Table IV. The radius of each well is 0.1m, giving
a well hydraulic conductivity value of 104 m s−1.

A first-type boundary condition is used for hydraulic heads at the top of the domain and the
prescribed heads correspond to the interpolated groundwater table elevation on the island. Outside
the island (lateral boundaries), the prescribed hydraulic head is equal to 0.0, which is the Baltic
Sea elevation. The domain bottom is assumed to be impermeable.

Figure 14 shows the simulated steady-state head distribution in the fracture network. When
available, the observed hydraulic head in deep boreholes was compared with the simulated hydraulic
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Figure 13. Fracture zones at the Olkiluoto site in Finland: (a) undiscretized triangulated zones where,
for clarity, triangle edges are not shown and (b) discretized triangulated zones and boreholes (black
dots). Spatial dimensions of the two plots are different because the undiscretized zones shown in
(a) cover an area larger than the model area shown in (b). However, perspective and axes ratios are

identical to allow easy comparison.

head and the comparison is shown in Figure 15. Note that the purpose of this simulation is to
apply the new fracture discretization method to a field-scale example. The goal is not to calibrate
the model and, therefore, simulated heads shown in Figure 15 are for an uncalibrated model.
Accordingly, the figure does not show good but approximate agreement between observed and
simulated hydraulic head.
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Figure 14. Steady-state hydraulic heads in the fracture network.
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Figure 15. Observed versus simulated steady-state hydraulic heads in open boreholes at the Olkiluoto site.

5. SUMMARY AND CONCLUSIONS

This study presents a new technique to represent inclined non-planar fractures by a set of 2D
horizontal/vertical/inclined triangular/rectangular fracture elements in a 3D irregular grid. The
technique (i) assumes a triangulated natural fracture, (ii) determines 3D element edge intersections
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for each triangle, (iii) moves intersections to closest nodes and (iv) chooses 2D triangular and
rectangular fracture elements to finally discretize the continuous non-planar fracture.

The new technique was implemented in the FRAC3DVS model. The enhanced model was
then used to conduct flow and transport simulations in 2D and 3D, where an inclined fracture
is discretized with inclined triangular elements. The simulations were repeated with the inclined
fracture being discretized with orthogonal rectangular elements and the two sets of simulations
were compared. In summary, the simulations indicate that:

(1) For 2D transient flow simulations, inclined fractures have to be discretized with inclined ele-
ments because orthogonal elements underestimate hydraulic heads (using h0(t = 0) = 0.0m).

(2) For 2D/3D steady-state flow and transient 3D flow simulations, inclined fractures can be
discretized with inclined or orthogonal elements. Both discretizations give identical flow
results.

(3) For 2D/3D transport simulations, inclined fractures have to be discretized with inclined
elements because orthogonal elements significantly underestimate concentrations (using
c(t = 0) = 0.0).

(4) Results of 2D/3D transport simulations using inclined and orthogonal elements are identical
when the permeability of the orthogonal fracture elements is multiplied by the ratio of the
fracture surface areas using

�corrfr = �fr · Aorthogonal
fr

Ainclined
fr

(6)

Because fracture permeability is calculated with �fr = (2b)2/12, the corrected fracture aper-
ture using orthogonal fracture elements is

(2b)corr = (2b) ·
√√√√ Aorthogonal

fr

Ainclined
fr

(7)

The enhanced model was used to discretize a realistic network of non-planar fractures and to con-
duct steady-state flow simulations at the field scale. The simulated domain corresponds to fractured
crystalline bedrock on the Olkiluoto island, Finland. It has been shown that the new discretization
method accurately represents fracture zones in the numerical grid, which demonstrates flexibility
and robustness of the new method. With an uncalibrated model, observed hydraulic heads could
be approximately reproduced, showing that the proposed discretization procedure offers new pos-
sibilities to simulate flow and has great potential to simulate transport in complex 3D fracture
networks.

NOMENCLATURE

The use of symbols for main variables is consistent throughout the entire text. The mathematical
symbols used in this paper correspond to those used by Graf and Therrien [19] and are not listed
here.
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35. Mustapha H. Simulation numérique de l’écoulement dans des milieux fracturés tridimensionnels. Ph.D. Thesis,
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